

    
      
          
            
  
malibu – documentation

malibu is a collection of classes and utilities that make writing code
a little bit easier and a little less tedious.

The whole point of this library is to have a small codebase that could
be easily reused across projects with nice, easily loadable chunks that
can be used disjointly.




Table of Contents

Contents:



	malibu API
	malibu.command
	malibu.command.module





	malibu.config
	malibu.config.configuration





	malibu.database
	malibu.database.dbmapper

	Note from the author: (01 / 14 / 2016)

	malibu.database.dbtypeconv





	malibu.design
	malibu.design.borgish

	malibu.design.brine





	malibu.text

	malibu.util












Indices and tables


	Index

	Module Index

	Search Page







          

      

      

    

  

    
      
          
            
  
malibu API





malibu.command

Module for processing commands in a CLI fashion.


	
malibu.command.get_command_modules(package=None)

	Reads a package and returns a dictionary of modules decorated with
the command_module() decorator.





	Parameters:	package (str) – Package to search for command modules


	Returns:	dictionary of command modules


	Return type:	dict


	Raises:	AttributeError – if package has no __all__ attribute










	
malibu.command.command_module(func, *args, **kw)

	A decorator function that is used to register command modules in the
__command_modules dictionary.





	Parameters:	
	func (function) – Function being decorator

	*args – positional arguments



	**kw – keyword arguments








	Returns:	none




	Return type:	None












malibu.command.module

A relatively self-contained system for loading and creating command “modules”
for a CLI-style script.

A command module must extend the CommandModule
and set up the class as such:

from malibu.command import command_module, module

@command_module(
    name = "example",
    depends = []
)
class ExampleModule(module.CommandModule):

    def __init__(self, loader):

        super(ExampleModule, self).__init__()
        self.__loader = loader

        self.register_subcommand("help", self.show_help)

    def show_help(self, *args, **kw):
        """ example:help []

            Does something.
        """

        if "args" in kw:
            argparser = kw["args"]
        else:
            argparser = self.__loader.get_argument_parser()

        pass  # Do stuff...





After all modules are implemented, use something similar to the following in
a console entry point:

from malibu import command
from malibu.util import args

argparser = args.ArgumentParser.from_argv()
# Set up argparser params, mappings, etc here.

modloader = module.CommandModuleLoader(argparser)

mods = command.get_command_modules(package = __package__)
# Or replace __package__ with your cmd module package path
modloader.register_modules(mods.values())
modloader.instantiate_modules()

argparser.parse()

modloader.parse_command(
    argparser.parameters[1],  # module base
    *argparser.parameters[1:],  # subcommand and args
    args = argparser)






	
class malibu.command.module.CommandModuleLoader(argparser, *args, **kw)

	Initializes a ModuleLoader object with a list for modules and
sets the static __instance so the object is always accessible.


	
deinit_modules()

	Runs __deinit__ on all registered modules.






	
deregister_module(obj)

	Removes a module instance from the list of registered
modules.






	
get_argument_parser()

	Returns the argument parser that will be passed into
functions that are called by the loader as command line
parameters.
Allows modules to access the parser during instantiation
to change param modules, add help text, register aliases,
etc.






	
get_module_by_base(modbase)

	Returns a module instance by the module’s base name.
Returns None if the named instance does not exist.






	
instantiate_modules(clslist=[])

	Instantiates all module classes that are registered.
** Might perform dependency lookup as well.






	
modules

	Returns the list of modules.






	
parse_command(command, *args, **kw)

	Process a command and fire the function for the matching
command and subcommand.  Returns the function execution
result, if any.






	
register_module(cls)

	Registers a single module in the modloader list.

Checks if any module instances in the module list
and raises if an instance already exists.

Otherwise, the module is instantiated, appended,
and returned.






	
register_modules(clslist)

	Registers a list of modules through subsequent calls to
register_module().  Returns the list of instantiated
modules.










	
class malibu.command.module.CommandModule(base=None)

	Module superclass.  Abstracts away some parts of
a command module to make implementation simpler.
Should only be inherited, never instantiated by itself.

Initializes a Module object with the command base,
maps, and help dictionary.


	
execute_subcommand(subcommand, *args, **kw)

	Attempts to fire the subcommand with arguments,
and keywords, may throw CommandModuleException.






	
get_base()

	Returns the command base.






	
get_help()

	Returns the help dictionary for this
module.






	
has_alias(alias)

	Boolean-returning method for if this Module
has registered a specific alias.






	
has_subcommand(subcommand)

	Boolean-returning method for if this Module
has registered a specific subcommand.






	
is_command(command)

	Simple boolean-returning method used during command
parsing.






	
register_subcommand(subcommand, function, aliases=[])

	Registers a subcommand and its help in
the internal maps. Updates aliases, subcommands, etc.






	
resolve_alias(alias)

	Resolves an alias to a subcommand and returns
the subcommand.






	
unregister_subcommand(subcommand)

	Removes a subcommand, all aliases, and all help
from the internal maps.










	
exception malibu.command.module.CommandModuleException(value)

	Super special exception for modules.










malibu.config

Relatively simplistic configuration file loader, parser, and writer.

Has the ability to cross-link sections and load into completely de-serialized
Python dictionaries.

Example of configuration format:

; filename: example.ini

[server]
address = 127.0.0.1
port = 1234

[default_route]
uri = /
controller = example_project.views.ExampleView

[static_content]
uri = /other_place
content = +url:https://maio.me/~pirogoeth/VIRUS.txt

[file_content]
uri = /another_place
content = +file:/var/data/content.txt

[routes]
routes = +list:["@default_route"]





Usage:

from malibu.config import configuration
conf = configuration.Configuration()
conf.load("example.ini")

# Grab a section
srv_opts = conf.get_section("server")

# Iterate over sections
for section in conf.sections:
    # do section...
    pass

# Add a section
data = {
    "value": "abc",
    "num": 123
}

conf.add_section("test", data)
conf.add_section("test2", data)

# Remove a section
conf.remove_section("test2")

# Save the changed configuration
conf.save()

# Or, save to a new file
conf.save(filename = "/var/data/config2.ini")






malibu.config.configuration

INI-style configuration implementation with some special features
to make configuration a little simpler.


	
class malibu.config.configuration.Configuration

	Configuration class performs the loading, saving, and parsing
of an INI-style configuration file with a few advanced features
such as value typing, file inclusion, section references, and
JSON-style list definition.

initialise the container
store in key:value format withing the certain category


	
add_section(section_name)

	Adds a new configuration section to the main dictionary.






	
get_namespace(namespace)

	Returns a set of ConfigurationSection objects that are prefixed
with the namespace specified above.

If no configuration sections have the requested namespace, None
is returned.





	Parameters:	namespace (str) – Namespace to find in section name.


	Return type:	set


	Returns:	dict or None










	
get_section(section_name)

	Return the internal ConfigurationSection representation of a
set of configuration entries.





	Parameters:	section_name (str) – Section name to retrieve.


	Return type:	malibu.config.configuration.ConfigurationSection


	Returns:	ConfigurationSection or None










	
has_section(section_name)

	Return if this configuration has a section named
:param section_name:.






	
load(filename)

	Loads a INI-style configuration from the given filename.
If the file can not be opened from :param filename:,
a ValueError is raised. Upon any other error,
the exception is simply raised to the top.





	Raises:	
	ValueError – if no filename provided.

	Exception – upon other error














	
load_file(fobj)

	Performs the full load of the configuration file from
the underlying file object. If a file object is not passed in
:param fobj:, TypeError is raised.





	Raises:	TypeError – if :param fobj: is not a file type










	
reload()

	Reload the configuration from the initially specified file






	
remove_section(section_name)

	Removes a section from the main dictionary.






	
save(filename=None)

	Write the loaded configuration into the file specified by
:param filename: or to the initially specified filename.

All linked sections are flattened into SectionPromise instances
and written to the configuration properly.





	Raises:	ValueError – if no save filename available.










	
sections

	Returns a list of all sections in the configuration.






	
unload()

	Unload an entire configuration










	
class malibu.config.configuration.ConfigurationSection

	The ConfigurationSection class is a modified dictionary that
provides “helpers” to grab a configuration entry in it’s correct
“type” form.


	
get(key, default=None)

	The bare “get” on the underlying dictionary that returns the
configuration entry in whatever form it was parsed as, typically
a string.






	
get_bool(key, default=False)

	Attempts to safely fetch the value mapped to by :param key:.
After successful retrieval, a conditional coercion to boolean
is attempt. If the coercion to boolean fails, :param default: is
returned.






	
get_int(key, default=None)

	Attempts to fetch and intify the value mapped to by
:param key:. If an error occurs while trying to intify the value,
:param default: will be returned.






	
get_list(key, delimiter=u', ', strip=True, default=[])

	Attempts to take a something-delimited string and “listify” it.
If an error occurs while attempting to listify, :param default:
will be returned.






	
get_string(key, default=u'')

	Attempts to take the value stored and retrieve it safely as a
string. If the value mapped to by :param key: is ”!None”, the
object returned is NoneType.

If an error occurs while trying to safely retrieve the string,
:param default: is returned.






	
set(key, value)

	Allows programmatic setting of configuration entries.






	
set_mutable(mutable)

	Enforces immutability on a configuration section.










	
class malibu.config.configuration.SectionPromise(config, section, key, link)

	this is a configuration section promise
to make resolution of linked sections post-load
easier.


	
resolve()

	Resolves a SectionPromise into the proper dictionary
value.














malibu.database

malibu’s database classes were mainly an experiment with ORM tech using
Python’s introspection capabilities, closures, and properties.

The actual ORM class exists as malibu.database.dbmapper.DBMapper
and should be inherited to be used properly.

malibu.database.dbmapper.dbtypeconv is a stub module for installing
adapters into the sqlite3 module.

As of the 0.1.6 release, the DBMapper and dbtypeconv are both
deprecated in favour of external ORM projects with better compatibility.


malibu.database.dbmapper

This is a small, hackish ORM for SQLite3.




Note from the author: (01 / 14 / 2016)

I’ve got to be honest, this is probably the worst code I have ever written and read.
At this point, this code is so difficult to maintain and keep up to date for 2/3 compat that
it is almost not worth the work.
Especially considering that there are things like Peewee, SQLAlchemy, etc, this is not worth
using or maintaining.

From this point forward, I recommend using some other, cleaner, better maintained solution
such as Peewee.
This DBMapper code will no longer be maintained and will be deprecated starting
with the 0.1.6 release.
The code will be removed as the 1.0.0 release approaches.
There may be plans to replace this with a SQLite adapter for the malibu.design.brine series
of classes that behave similar to this, just without all the cruft.


	
class malibu.database.dbmapper.DBMapper(db, keys, keytypes, options={'uniqueIndices': set([]), 'primaryIndex': 0, 'autoincrIndex': True, 'genFTSVTs': False})

	This is code for a relatively small ORM for SQLite built
on top of the python-sqlite3 module.


	
static connect_database(dbpath)

	Connects to a database at ‘dbpath’ and installs the json
type converter “middleware” into the database system.






	
classmethod find(**kw)

	Searches for a set of records that match the query built by
the contents of the kwargs and returns a filterable list of
contextualized results that can be modified.






	
classmethod find_all()

	Finds all rows that belong to a table and returns a filterable
list of contextualized results. Please note that the list that
is returned can be empty, but it should never be none.






	
static get_default_options()

	Returns a deep copy of the default options dictionary for
modification in subclasses.






	
classmethod join(cond, a, b)

	
	DBMapper.join(cond => other table to join on

	a    => left column to join
b    => right column to join)



Performs a sqlite join on two tables. Returns the join results
in a filterable list.






	
classmethod load(**kw)

	Loads a single row from the database and populates it into
the context cls this method was called under.

If the database returns more than one row for the kwarg query,
this method will only return the first result! If you want a
list of matching rows, use find() or search().






	
classmethod new(**kw)

	Creates a new contextual instance and returns the object.
Only parameters defined in the kwargs will be passed in to
the record creation query, as there is no support for default
values yet. (06/11/15)






	
classmethod search(param)

	This function will return a list of results that match the given
param for a full text query. The search parameter should be in the
form of a sqlite full text query, as defined here:


http://www.sqlite.org/fts3.html#section_3


As an example, suppose your table looked like this:









	id
	name
	description


	1
2
3
	
linux


freebsd
windows


	
some magic



	daemonic magic

	tomfoolery












A full text query for “name:linux magic” would return the first
row because the name is linux and the description contains “magic”.
A full text query just for “description:magic” would return both
rows one and two because the descriptions contain the word “magic”.






	
classmethod set_db_options(db, keys, ktypes, options={'uniqueIndices': set([]), 'primaryIndex': 0, 'autoincrIndex': True, 'genFTSVTs': False})

	
	DBMapper.set_db_options(db       => database instance

	keys     => list of keys
ktypes   => list of key types
options  => options dictionary (optional))



Sets options for a subclasses DBMapper context.












malibu.database.dbtypeconv

This module contains small functions for installing and performing JSON
conversion on data coming out from a SQLite database.

Pretty much useless-ish without DBMapper.


	
malibu.database.dbtypeconv.install_json_converter()

	Installs a json object converter into the sqlite3 module for
quick type conversions.










malibu.design

The classes in this package are essentially small design experiments.
Both pieces have a little bit of history behind them and were/are
intended to replace either a design methodology or another part of
the library. You can read more about their “history” in the class
packages.


malibu.design.borgish

Borgish was designed as a more extended implementation of Alex Martelli’s
Borg design pattern, which aims to provide state consistency similar to
a singleton design, but without the terribleness of singletons.


	
class malibu.design.borgish.SharedState(*args, **kw)

	This class is for meta-class use as a state machine for
persistence so we don’t use any singleton design.

The module is “Borg-ish”, as this implementation is loosely
based on the Borg design pattern by Alex Martelli.

Calls the classes state dict initializer and loads initial
state, if provided.


	
drop_state(state)

	Drops the state specified from the class’ shared state dictionary.





	Parameters:	state (str) – Name of state to drop.


	Return type:	bool


	Returns:	True if state was dropped, False otherwise.










	
load_state(state)

	Loads state into the class, overwriting all data that was
previously stored.





	Parameters:	state (str) – Name of state to load.


	Return type:	None


	Returns:	None


	Raises:	NameError – If the named state does not exist.










	
save_state(state)

	Saves class state into a namespace on the class’ shared state
dict.





	Parameters:	state (str) – Name of state to save.


	Return type:	None


	Returns:	None


	Raises:	NameError – If the named state already exists.
















malibu.design.brine

Brine is a play on Python’s pickle module, which is used for
serializing data. Brine is used for serialization as well, but
into JSON, not a binary structure.


	
class malibu.design.brine.BrineObject(*args, **kw)

	This object is for use as a base class for other data.
Essentially, it will expose a set of members that can be set
and then squashed down to a JSON object through a call to to_json.

It can also be used as a meta-class for the base of a caching object
model or other neat things.


	
as_dict()

	Returns the dictionary representation of the fields
in this object.





	Return type:	dict


	Returns:	Current object in dictionary form










	
classmethod by_dict(data, read_only=False, **kw)

	Creates a new instance with fields from the data parameter
as long as they match what is in _fields.

Also does recursion on nested Brine objects.





	Parameters:	
	cls (class) – BrineObject subclass

	data (dict) – Dictionary to use for fields

	read_only (bool) – Set object read-only

	**kw (dict) – BrineObject initializer options








	Return type:	BrineObject




	Returns:	BrineObject subclass instance




	Raises:	TypeError – If data is not dict type












	
classmethod by_json(data, read_only=False, **kw)

	Creates a new instance and calls from_json on the instance.

Will take kwargs and pass to the underlying instance
initializer.





	Parameters:	
	cls (class) – Class method is running on

	data (str) – JSON string to create object from

	read_only (bool) – Set object read-only

	**kw (dict) – Object initializer options








	Return type:	cls




	Returns:	new BrineObject subclass instance












	
from_dict(data)

	Creates a new instance with fields from the data parameter
as long as they match what is in _fields.

Also does recursion on nested Brine objects.


	NOTE: Modifies the BrineObject in-place!

	If there are recursive objects also provided
in the dictionary that are defined on the original
object, they will also be modified in-place!

Keys prefixed by an underscore will be
inserted into the object, but will not be tracked
in _fields or _special_fields.





WARNING: This silently ignores “bad” fields.





	Parameters:	data (dict) – Dictionary to use for fields


	Return type:	None


	Returns:	None


	Raises:	TypeError – If data is not dict type










	
from_json(data)

	Converts the JSON data back into an object, then loads
the data into the model instance.

NOTE: This changes the current model in-place!





	Parameters:	data (str) – JSON string to import


	Return type:	None


	Returns:	None










	
read_only()

	Set object as read-only. After an object is set
read-only, it can not be unset as read-only.





	Return type:	None


	Returns:	None










	
to_json()

	Converts the object into JSON form.
Simple, right?





	Return type:	str


	Returns:	Current object in JSON string form.














	
class malibu.design.brine.CachingBrineObject(*args, **kw)

	This is a magical class that performs the same function as the
BrineObject, but it also adds object caching, searching, and fuzzy
searching on the cache. Also provided is cached field invalidation /
“dirtying”.


	
dirty_dict()

	Dumps a dictionary of dirty fields.





	Return type:	dict


	Returns:	Dictionary of all dirty values










	
dirty_json()

	Dumps the dirty dictionary as JSON.





	Return type:	str


	Returns:	JSON dictionary of dirty values










	
classmethod fuzzy_search(ignore_case=False, **kw)

	Performs a fuzzy search on the cache to find objects that have at
least a diff ratio of FUZZ_RATIO.

Note that this can return more than one object and it may not be
accurate. Time will tell.

Returns a list of matches ordered by likelihood of match.





	Parameters:	
	cls (class) – Class to fuzzy search on

	ignore_case (bool) – Whether searching should ignore case

	**kw (dict) – Fields to search








	Return type:	list




	Returns:	List of matching CachingBrineObjects












	
classmethod search(ignore_case=False, **kw)

	Searches through the cache to find objects with field that match
those given by the **kw.

Note that this can return more than one object.





	Parameters:	
	ignore_case (bool) – Should search ignore case?

	**kw (dict) – Fields to search








	Return type:	list




	Returns:	List of matching CachingBrineObjects












	
uncache()

	Removes the object from the state cache forcibly.





	Return type:	None


	Returns:	None










	
unmark(*fields)

	Unmarks some field as dirty. Should only be called after
the upstream is updated or only if you know what you’re doing!





	Parameters:	*fields (list) – Fields to unmark




	Return type:	None


	Returns:	None














	
malibu.design.brine.fuzzy_ratio(a, b)

	Compares two values using the SequenceMatcher from difflib.
Used for ~approximated~ fuzzy search.





	Parameters:	
	a (str) – lhs string

	b (str) – rhs string






	Return type:	int




	Returns:	Integer ration of a <=> b
















malibu.text




malibu.util







          

      

      

    

  

    
      
          
            

   Python Module Index


   
   m
   


   
     		 	

     		
       m	

     
       	[image: -]
       	
       malibu	
       

     
       	
       	   
       malibu.command	
       

     
       	
       	   
       malibu.command.module	
       

     
       	
       	   
       malibu.config	
       

     
       	
       	   
       malibu.config.configuration	
       

     
       	
       	   
       malibu.database	
       

     
       	
       	   
       malibu.database.dbmapper	
       

     
       	
       	   
       malibu.database.dbtypeconv	
       

     
       	
       	   
       malibu.design	
       

     
       	
       	   
       malibu.design.borgish	
       

     
       	
       	   
       malibu.design.brine	
       

     
       	
       	   
       malibu.text	
       

     
       	
       	   
       malibu.util	
       

   



          

      

      

    

  

    
      
          
            

Index



 A
 | B
 | C
 | D
 | E
 | F
 | G
 | H
 | I
 | J
 | L
 | M
 | N
 | P
 | R
 | S
 | T
 | U
 


A


  	
      	add_section() (malibu.config.configuration.Configuration method)


  

  	
      	as_dict() (malibu.design.brine.BrineObject method)


  





B


  	
      	BrineObject (class in malibu.design.brine)


  

  	
      	by_dict() (malibu.design.brine.BrineObject class method)


      	by_json() (malibu.design.brine.BrineObject class method)


  





C


  	
      	CachingBrineObject (class in malibu.design.brine)


      	command_module() (in module malibu.command)


      	CommandModule (class in malibu.command.module)


      	CommandModuleException


  

  	
      	CommandModuleLoader (class in malibu.command.module)


      	Configuration (class in malibu.config.configuration)


      	ConfigurationSection (class in malibu.config.configuration)


      	connect_database() (malibu.database.dbmapper.DBMapper static method)


  





D


  	
      	DBMapper (class in malibu.database.dbmapper)


      	deinit_modules() (malibu.command.module.CommandModuleLoader method)


      	deregister_module() (malibu.command.module.CommandModuleLoader method)


  

  	
      	dirty_dict() (malibu.design.brine.CachingBrineObject method)


      	dirty_json() (malibu.design.brine.CachingBrineObject method)


      	drop_state() (malibu.design.borgish.SharedState method)


  





E


  	
      	execute_subcommand() (malibu.command.module.CommandModule method)


  





F


  	
      	find() (malibu.database.dbmapper.DBMapper class method)


      	find_all() (malibu.database.dbmapper.DBMapper class method)


      	from_dict() (malibu.design.brine.BrineObject method)


  

  	
      	from_json() (malibu.design.brine.BrineObject method)


      	fuzzy_ratio() (in module malibu.design.brine)


      	fuzzy_search() (malibu.design.brine.CachingBrineObject class method)


  





G


  	
      	get() (malibu.config.configuration.ConfigurationSection method)


      	get_argument_parser() (malibu.command.module.CommandModuleLoader method)


      	get_base() (malibu.command.module.CommandModule method)


      	get_bool() (malibu.config.configuration.ConfigurationSection method)


      	get_command_modules() (in module malibu.command)


      	get_default_options() (malibu.database.dbmapper.DBMapper static method)


  

  	
      	get_help() (malibu.command.module.CommandModule method)


      	get_int() (malibu.config.configuration.ConfigurationSection method)


      	get_list() (malibu.config.configuration.ConfigurationSection method)


      	get_module_by_base() (malibu.command.module.CommandModuleLoader method)


      	get_namespace() (malibu.config.configuration.Configuration method)


      	get_section() (malibu.config.configuration.Configuration method)


      	get_string() (malibu.config.configuration.ConfigurationSection method)


  





H


  	
      	has_alias() (malibu.command.module.CommandModule method)


  

  	
      	has_section() (malibu.config.configuration.Configuration method)


      	has_subcommand() (malibu.command.module.CommandModule method)


  





I


  	
      	install_json_converter() (in module malibu.database.dbtypeconv)


  

  	
      	instantiate_modules() (malibu.command.module.CommandModuleLoader method)


      	is_command() (malibu.command.module.CommandModule method)


  





J


  	
      	join() (malibu.database.dbmapper.DBMapper class method)


  





L


  	
      	load() (malibu.config.configuration.Configuration method)

      
        	(malibu.database.dbmapper.DBMapper class method)


      


  

  	
      	load_file() (malibu.config.configuration.Configuration method)


      	load_state() (malibu.design.borgish.SharedState method)


  





M


  	
      	malibu (module)


      	malibu.command (module)


      	malibu.command.module (module)


      	malibu.config (module)


      	malibu.config.configuration (module)


      	malibu.database (module)


      	malibu.database.dbmapper (module)


  

  	
      	malibu.database.dbtypeconv (module)


      	malibu.design (module)


      	malibu.design.borgish (module)


      	malibu.design.brine (module)


      	malibu.text (module)


      	malibu.util (module)


      	modules (malibu.command.module.CommandModuleLoader attribute)


  





N


  	
      	new() (malibu.database.dbmapper.DBMapper class method)


  





P


  	
      	parse_command() (malibu.command.module.CommandModuleLoader method)


  





R


  	
      	read_only() (malibu.design.brine.BrineObject method)


      	register_module() (malibu.command.module.CommandModuleLoader method)


      	register_modules() (malibu.command.module.CommandModuleLoader method)


      	register_subcommand() (malibu.command.module.CommandModule method)


  

  	
      	reload() (malibu.config.configuration.Configuration method)


      	remove_section() (malibu.config.configuration.Configuration method)


      	resolve() (malibu.config.configuration.SectionPromise method)


      	resolve_alias() (malibu.command.module.CommandModule method)


  





S


  	
      	save() (malibu.config.configuration.Configuration method)


      	save_state() (malibu.design.borgish.SharedState method)


      	search() (malibu.database.dbmapper.DBMapper class method)

      
        	(malibu.design.brine.CachingBrineObject class method)


      


      	SectionPromise (class in malibu.config.configuration)


  

  	
      	sections (malibu.config.configuration.Configuration attribute)


      	set() (malibu.config.configuration.ConfigurationSection method)


      	set_db_options() (malibu.database.dbmapper.DBMapper class method)


      	set_mutable() (malibu.config.configuration.ConfigurationSection method)


      	SharedState (class in malibu.design.borgish)


  





T


  	
      	to_json() (malibu.design.brine.BrineObject method)


  





U


  	
      	uncache() (malibu.design.brine.CachingBrineObject method)


      	unload() (malibu.config.configuration.Configuration method)


  

  	
      	unmark() (malibu.design.brine.CachingBrineObject method)


      	unregister_subcommand() (malibu.command.module.CommandModule method)


  







          

      

      

    

  nav.xhtml

    
      Table of Contents


      
        		malibu – documentation


        		malibu API
          
          		malibu.command
            
            		malibu.command.module


            


          


          		malibu.config
            
            		malibu.config.configuration


            


          


          		malibu.database
            
            		malibu.database.dbmapper


            		Note from the author: (01 / 14 / 2016)


            		malibu.database.dbtypeconv


            


          


          		malibu.design
            
            		malibu.design.borgish


            		malibu.design.brine


            


          


          		malibu.text


          		malibu.util


          


        


      


    
  

_static/plus.png





_static/ajax-loader.gif





_static/file.png





_static/up.png





_static/up-pressed.png





_static/down-pressed.png





_static/down.png





_static/minus.png





_static/comment-close.png





_static/comment-bright.png





_static/comment.png





